Package: HistDAWass 1.0.8
HistDAWass: Histogram-Valued Data Analysis
In the framework of Symbolic Data Analysis, a relatively new approach to the statistical analysis of multi-valued data, we consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., the Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series. An introducing paper is Irpino A. Verde R. (2015) <doi:10.1007/s11634-014-0176-4>.
Authors:
HistDAWass_1.0.8.tar.gz
HistDAWass_1.0.8.zip(r-4.5)HistDAWass_1.0.8.zip(r-4.4)HistDAWass_1.0.8.zip(r-4.3)
HistDAWass_1.0.8.tgz(r-4.4-x86_64)HistDAWass_1.0.8.tgz(r-4.4-arm64)HistDAWass_1.0.8.tgz(r-4.3-x86_64)HistDAWass_1.0.8.tgz(r-4.3-arm64)
HistDAWass_1.0.8.tar.gz(r-4.5-noble)HistDAWass_1.0.8.tar.gz(r-4.4-noble)
HistDAWass_1.0.8.tgz(r-4.4-emscripten)HistDAWass_1.0.8.tgz(r-4.3-emscripten)
HistDAWass.pdf |HistDAWass.html✨
HistDAWass/json (API)
# Install 'HistDAWass' in R: |
install.packages('HistDAWass', repos = c('https://airpino.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/airpino/histdawass/issues
- Age_Pyramids_2014 - Age pyramids of all the countries of the World in 2014
- Agronomique - Agronomique data
- BLOOD - Blood dataset for Histogram data analysis
- BloodBRITO - Blood dataset from Brito P. for Histogram data analysis
- China_Month - A monthly climatic dataset of China
- China_Seas - A seasonal climatic dataset of China
- OzoneFull - Full Ozone dataset for Histogram data analysis
- OzoneH - Complete Ozone dataset for Histogram data analysis
- RetHTS - A histogram-valued dataset of returns
- stations_coordinates - Stations coordinates of China_Month and China_Seas datasets
Last updated 10 months agofrom:be7447e3ba. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 21 2024 |
R-4.5-win-x86_64 | OK | Oct 21 2024 |
R-4.5-linux-x86_64 | OK | Oct 21 2024 |
R-4.4-win-x86_64 | OK | Oct 21 2024 |
R-4.4-mac-x86_64 | OK | Oct 21 2024 |
R-4.4-mac-aarch64 | OK | Oct 21 2024 |
R-4.3-win-x86_64 | OK | Oct 21 2024 |
R-4.3-mac-x86_64 | OK | Oct 21 2024 |
R-4.3-mac-aarch64 | OK | Oct 21 2024 |
Exports:Center.cell.MatHcheckEmptyBinscompPcompQcrwtransformdata2histdistributionHdotpWDouglasPeuckerget.cell.MatHget.distrget.histoget.mget.MatH.main.infoget.MatH.ncolsget.MatH.nrowsget.MatH.rownamesget.MatH.statsget.MatH.varnamesget.sHTS.exponential.smoothingHTS.moving.averagesHTS.predict.knnis.registeredMHkurtHMatHmeanHplotplot_errorsplotPredVsObsregisterregisterMHrQQset.cell.MatHShortestDistanceskewHstdHsubsetHTSsummaryHTSWassSqDistHWH_2d_Adaptive_Kohonen_mapsWH_2d_Kohonen_mapsWH_adaptive_fcmeansWH_adaptive.kmeansWH_fcmeansWH_hclustWH_kmeansWH_MAT_DISTWH.1d.PCAWH.bindWH.bind.colWH.bind.rowWH.correlationWH.correlation2WH.mat.prodWH.mat.sumWH.MultiplePCAWH.plot_multiple_indivsWH.plot_multiple_Spanish.funsWH.regression.GOFWH.regression.two.componentsWH.regression.two.components.predictWH.SSQWH.SSQ2WH.var.covarWH.var.covar2WH.vec.meanWH.vec.sum
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDataclasscliclustercolorspacecowplotcpp11crosstalkDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluateFactoMineRfansifarverfastmapflashClustfontawesomeFormulafsgenericsggplot2ggrepelggridgesgluegtablehighrhistogramhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpromisespurrrquantregR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenrlangrmarkdownsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml